The effect of nucleotomy and the dependence of degeneration of human intervertebral disc strain in axial compression.

نویسندگان

  • Grace D O'Connell
  • Neil R Malhotra
  • Edward J Vresilovic
  • Dawn M Elliott
چکیده

STUDY DESIGN Biomechanics of human intervertebral discs before and after nucleotomy. OBJECTIVE To noninvasively quantify the effect of nucleotomy on internal strains under axial compression in flexion, neutral, and extension positions, and to determine whether the change in strains depended on degeneration. SUMMARY OF BACKGROUND DATA Herniation and nucleotomy may accelerate the progression of disc degeneration. Removal of nucleus pulposus (NP) tissue has resulted in altered disc mechanics in vitro, including a decrease in internal pressure and an increase in the deformations at physiologically relevant strains. We recently presented a technique to quantify internal disc strains using magnetic resonance imaging (MRI). METHODS Degeneration was quantitatively assessed by the T1ρ relaxation time in the NP. Samples were prepared from human levels L3-L4 and/or L4-L5. A 1000-N compressive load was applied while in the magnetic resonance scanner. Nucleotomy was performed by removing 2 g of NP through the posterior-lateral annulus fibrosus (AF). The discs were rehydrated, reimaged, and retested. The analyzed parameters include axial deformation, AF radial bulge, and strains. RESULTS.: The axial deformation was more compressive after nucleotomy. In the neutral position, the axial deformation after nucleotomy correlated with degeneration (as quantified by T1ρ in the NP), with minimal alteration in nondegenerated discs. Nucleotomy altered the radial displacements and strains in the neutral position, such that the inner AF radial bulge decreased and the radial strains were more tensile in the lateral AF and less tensile in the posterior AF. In the bending loading positions the radial strains were not affected by nucleotomy. CONCLUSION Nucleotomy alters the internal radial and axial AF strains in the neutral position, which may leave the AF vulnerable to damage and microfractures. In bending, the effects of nucleotomy were minimal, likely due to more of the applied load being directed over the AF. Some of the nucleotomy effects are modulated by degeneration, where the mechanical effect of nucleotomy was magnified in degenerated discs and may further induce mechanical damage and degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human intervertebral disc internal strain in compression: the effect of disc region, loading position, and degeneration.

The primary function of the disc is mechanical; therefore, degenerative changes in disc mechanics and the interactions between the annulus fibrosus (AF) and nucleus pulposus (NP) in nondegenerate and degenerate discs are important to functional evaluation. The disc experiences complex loading conditions, including mechanical interactions between the pressurized NP and the surrounding fiber-rein...

متن کامل

Examination of an in vitro methodology to evaluate the biomechanical performance of nucleus augmentation in axial compression

Intervertebral disc degeneration is one of the leading causes of back pain, but treatment options remain limited. Recently, there have been advances in the development of biomaterials for nucleus augmentation; however, the testing of such materials preclinically has proved challenging. The aim of this study was to develop methods for fabricating and testing bone-disc-bone specimens in vitro for...

متن کامل

Biomechanical Evaluation of Transpedicular Nucleotomy with Intact Annulus Fibrosus.

STUDY DESIGN Biomechanical testing of partially nucleotomized ovine cadaveric spines. OBJECTIVE To explore how the nucleus pulposus (NP) affects the biomechanical behavior of the intervertebral disc (IVD) by performing a partial nucleotomy via the transpedicular approach. SUMMARY OF BACKGROUND DATA Mechanical loading represents a crucial part of IVD homeostasis. However, traditional regener...

متن کامل

Biomechanical testing of a polymer-based biomaterial for the restoration of spinal stability after nucleotomy

BACKGROUND Surgery for disc herniations can be complicated by two major problems: painful degeneration of the spinal segment and re-herniation. Therefore, we examined an absorbable poly-glycolic acid (PGA) biomaterial, which was lyophilized with hyaluronic acid (HA), for its utility to (a) re-establish spinal stability and to (b) seal annulus fibrosus defects. The biomechanical properties range...

متن کامل

Association of Rs1676486 genetic polymorphism and lumbar disc degeneration in Iranian population

Background: lumbar disc degeneration is a multifactorial degenerative disease which is affected by genetic inheritance and environmental factors. Type XI collagen is important for organization of the extracellular matrix and cartilage collagen construction. Rs1676486 is a SNP that causes the conversion of C-T, resulting in a change in the expression of the collagen 11 alpha chain. The T allele ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Spine

دوره 36 21  شماره 

صفحات  -

تاریخ انتشار 2011